// #################################### // # # // # Ping of Death - Bot # // # by # // # Markus Klinge aka Count Floyd # // # # // #################################### // // Started from the HPB-Bot Alpha Source // by Botman so Credits for a lot of the basic // HL Server/Client Stuff goes to him // // compress.cpp // // POD Data Compress Routines based on LZSS // // Actually I ripped this out of the AceBot Source and // modified it to suit my needs. // This is what the original (?) Author writes: // // Original file is Copyright(c), Steve Yeager 1998 // // Not sure where I got this code, but thanks go to the // author. I just rewote it to allow the use of buffers // instead of files. // /////////////////////////////////////////////////////////// #include #include #include #include #include #define N 4096 // size of ring buffer #define F 18 // upper limit for match_length #define THRESHOLD 2 // encode string into position and length if match_length is // greater than this index for root of binary search trees #define NIL N unsigned long int textsize = 0, // text size counter codesize = 0, // code size counter printcount = 0; // counter for reporting progress every 1K bytes unsigned char text_buf[N + F - 1]; // ring buffer of size N, with extra F-1 bytes to facilitate string // comparison of longest match. Set by the InsertNode() procedure. int match_position, match_length, lson[N + 1], rson[N + 257], dad[N + 1]; // left & right children & parents -- These // constitute binary search trees. void InitTree (void) // initialize trees { int i; // For i = 0 to N - 1, rson[i] and lson[i] will be the right and // left children of node i. These nodes need not be initialized. // Also, dad[i] is the parent of node i. These are initialized to // NIL (= N), which stands for 'not used.' // For i = 0 to 255, rson[N + i + 1] is the root of the tree // for strings that begin with character i. These are initialized // to NIL. Note there are 256 trees. for (i = N + 1; i <= N + 256; i++) rson[i] = NIL; for (i = 0; i < N; i++) dad[i] = NIL; } void InsertNode (int r) { // Inserts string of length F, text_buf[r..r+F-1], into one of the // trees (text_buf[r]'th tree) and returns the longest-match position // and length via the global variables match_position and match_length. // If match_length = F, then removes the old node in favor of the new // one, because the old one will be deleted sooner. // Note r plays double role, as tree node and position in buffer. int i, p, cmp; unsigned char *key; cmp = 1; key = &text_buf[r]; p = N + 1 + key[0]; rson[r] = lson[r] = NIL; match_length = 0; for (; ;) { if (cmp >= 0) { if (rson[p] != NIL) p = rson[p]; else { rson[p] = r; dad[r] = p; return; } } else { if (lson[p] != NIL) p = lson[p]; else { lson[p] = r; dad[r] = p; return; } } for (i = 1; i < F; i++) if ((cmp = key[i] - text_buf[p + i]) != 0) break; if (i > match_length) { match_position = p; if ((match_length = i) >= F) break; } } dad[r] = dad[p]; lson[r] = lson[p]; rson[r] = rson[p]; dad[lson[p]] = r; dad[rson[p]] = r; if (rson[dad[p]] == p) rson[dad[p]] = r; else lson[dad[p]] = r; dad[p] = NIL; // remove p } void DeleteNode (int p) // deletes node p from tree { int q; if (dad[p] == NIL) return; // not in tree if (rson[p] == NIL) q = lson[p]; else if (lson[p] == NIL) q = rson[p]; else { q = lson[p]; if (rson[q] != NIL) { do q = rson[q]; while (rson[q] != NIL); rson[dad[q]] = lson[q]; dad[lson[q]] = dad[q]; lson[q] = lson[p]; dad[lson[p]] = q; } rson[q] = rson[p]; dad[rson[p]] = q; } dad[q] = dad[p]; if (rson[dad[p]] == p) rson[dad[p]] = q; else lson[dad[p]] = q; dad[p] = NIL; } int Encode (char *filename, unsigned char* header, int headersize, unsigned char *buffer, int bufsize) { int i, c, len, r, s, last_match_length, code_buf_ptr; unsigned char code_buf[17], mask; int bufptr = 0; FILE *pOut; pOut = fopen (filename, "wb"); if (pOut == NULL) return (-1); // bail // Write Header first fwrite (header, headersize, 1, pOut); InitTree (); // initialize trees // code_buf[1..16] saves eight units of code, and code_buf[0] works as eight flags, // "1" representing that the unit is an unencoded letter (1 byte), "0" a // position-and-length pair (2 bytes). Thus, eight units require at most 16 bytes of code. code_buf[0] = 0; code_buf_ptr = mask = 1; s = 0; r = N - F; for (i = s; i < r; i++) text_buf[i] = ' '; // Clear the buffer with any character that will appear often. for (len = 0; (len < F) && (bufptr < bufsize); len++) { c = buffer[bufptr++]; text_buf[r + len] = c; // Read F bytes into the last F bytes of the buffer } if ((textsize = len) == 0) return (-1); // text of size zero // Insert the F strings, each of which begins with one or more 'space' characters. // Note the order in which these strings are inserted. This way, degenerate trees // will be less likely to occur. for (i = 1; i <= F; i++) InsertNode (r - i); // Finally, insert the whole string just read. The global variables // match_length and match_position are set. InsertNode (r); do { if (match_length > len) match_length = len; // match_length may be spuriously long near the end of text. if (match_length <= THRESHOLD) { match_length = 1; // Not long enough match. Send one byte. code_buf[0] |= mask; // 'send one byte' flag code_buf[code_buf_ptr++] = text_buf[r]; // Send uncoded. } else { // Send position and length pair. Note match_length > THRESHOLD. code_buf[code_buf_ptr++] = (unsigned char) match_position; code_buf[code_buf_ptr++] = (unsigned char) (((match_position >> 4) & 0xf0) | (match_length - (THRESHOLD + 1))); } if ((mask <<= 1) == 0) { // Shift mask left one bit. for (i = 0; i < code_buf_ptr; i++) putc (code_buf[i], pOut); // Send at most 8 units of code together codesize += code_buf_ptr; code_buf[0] = 0; code_buf_ptr = mask = 1; } last_match_length = match_length; for (i = 0; (i < last_match_length) && (bufptr < bufsize); i++) { c = buffer[bufptr++]; DeleteNode (s); // Delete old strings and text_buf[s] = c; // read new bytes // If the position is near the end of buffer, extend the buffer to make // string comparison easier. if (s < F - 1) text_buf[s + N] = c; // Since this is a ring buffer, increment the position modulo N. s = (s + 1) & (N - 1); r = (r + 1) & (N - 1); InsertNode (r); // Register the string in text_buf[r..r+F-1] } while (i++ < last_match_length) { // After the end of text, no need to read, but buffer may not be empty. DeleteNode (s); s = (s + 1) & (N - 1); r = (r + 1) & (N - 1); if (--len) InsertNode (r); } } while (len > 0); // until length of string to be processed is zero if (code_buf_ptr > 1) { // Send remaining code. for (i = 0; i < code_buf_ptr; i++) putc (code_buf[i], pOut); codesize += code_buf_ptr; } fclose (pOut); return (codesize); } int Decode (char *filename, int headersize, unsigned char *buffer, int bufsize) { // Be careful with your buffersize, will return an exit of -1 if failure int i, j, k, r, c; unsigned int flags; int bufptr = 0; FILE *pIn; pIn = fopen (filename, "rb"); if (pIn == NULL) return (-1); // bail // Skip Header fseek (pIn, headersize, SEEK_SET); r = N - F; for (i = 0; i < r; i++) text_buf[i] = ' '; flags = 0; for (; ;) { if (((flags >>= 1) & 256) == 0) { if ((c = getc (pIn)) == EOF) break; flags = c | 0xff00; // uses higher byte cleverly } // to count eight if (flags & 1) { if ((c = getc (pIn)) == EOF) break; buffer[bufptr++] = c; if (bufptr > bufsize) return (-1); // check for overflow text_buf[r++] = c; r &= (N - 1); } else { if ((i = getc (pIn)) == EOF) break; if ((j = getc (pIn)) == EOF) break; i |= ((j & 0xf0) << 4); j = (j & 0x0f) + THRESHOLD; for (k = 0; k <= j; k++) { c = text_buf[(i + k) & (N - 1)]; buffer[bufptr++] = c; if (bufptr > bufsize) return (-1); // check for overflow text_buf[r++] = c; r &= (N - 1); } } } fclose (pIn); return (bufptr); // return uncompressed size }